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Monte Carlo Generation of Self-Avoiding Walks
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We propose a new class of dynamic Monte Carlo algorithms for generating self-
avoiding walks uniformly from the ensemble with fixed endpoints and fixed
length in any dimension, and prove that these algorithms are ergodic in all
cases. We also prove the ergodicity of a variant of the pivot algorithm.
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1. INTRODUCTION

The self-avoiding walk (SAW) is a widely studied lattice model of a
polymer molecule with excluded volume.* It is also important in the
study of critical phenomena, since it is equivalent to the N =0 limit of the
N-vector model.®

Through the years, many dynamic Monte Carlo algorithms have been
used to study the SAW. Their strategy is as follows: begin with an arbitrary
SAW; make some random change to it to get another SAW; repeat. This
produces a random (correlated) sequence of SAWs, from which statistics
may be taken. A “local” algorithm is one in which the random change is
always restricted to a bounded number of adjacent bonds (typically three
or less). Local methods have been widely used (for a survey, see ref. 4), but
they suffer from two difficuities: (1) The resulting sequence of SAWs is
highly correlated, and (2)if the changes are length-conserving as well as
local, then the algorithm will not be ergodic® (i.e., given any initial N-step
SAW, there exist many other N-step SAWs which can never be produced
by the algorithm).
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In contrast, the pivot algorithm invented by Lal‘® makes nonlocal
changes to SAWs of fixed length N: a pivot point is chosen at random on
the SAW, and a random reflection/rotation is applied to the part of the
SAW subsequent to the pivot point, using the pivot point as the origin.
Several attempts may be necessary, but when a change is successful, the
resulting SAW will likely be “very different” (with respect to global
observables such as end-to-end distance). In practice, this Monte Carlo
procedure seems to produce an “effectively independent” observation in
computer time of order N (or perhaps Nlog N), in the sense that the
variance of a global observable is proportional to N (or perhaps N log N)
divided by the total amount of computer time (see ref. 7, Sections 3.2-3.4
for more details). In addition, it is ergodic (any N-step SAW can be trans-
formed into any other by a sequence of allowed changes), and satisfies
detailed balance (or “reversibility”) for the usual equal-weight probability
distribution on the set of N-step SAWs,

We remark that nonlocal changes are usually rather “nonphysical”;
thus, if one wishes to investigate the dynamics of polymer molecules, then
local changes may be more appropriate. However, if one is interested only
in equilibrium expectation values of a particular model, then there can be
no objection to nonlocal moves if they are more efficient. Indeed, in view
of (2) above, any algorithm for the fixed-length ensemble of SAWs in
principle MUST use nonlocal changes.

It is also of interest to study the subclass of SAWs with fixed
endpoints. In particular, if the endpoints are nearest neighbors, then this is
the subclass of “self-avoiding polygons” (which one can think of as simple
closed curves). Berg and Foerster® and Aragio de Carvalho et al.®!'®
(“BFACF”) proposed a “local” Monte Carlo algorithm (see Fig. 1) that
generates SAWs with fixed endpoints, allowing N to change. This algo-
rithm can be very slow; in fact, its exponential autocorrelation time is
infinite."" Moreover, there are ergodicity problems in three dimensions,
since the knot type of a self-avoiding polygon cannot be changed by the
BFACF moves.

Fig. 1. Moves in the BFACF algorithm. The second move changes the length by 2.
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To investigate the fixed-endpoints ensemble, one would like a set of
nonlocal moves which could speed up the BFACF algorithm and make it
ergodic. Dubins ef al.''?) devised a length-conserving algorithm for self-
avoiding polygons in two dimensions and proved its ergodicity.

In this paper, we propose a new class of algorithms for fixed-length,
fixed-endpoints ensembles of SAWs on the simple (hyper) cubic lattice
in any dimension. We also prove that they are ergodic in all cases; in
particular, knots appear and disappear routinely, without requiring any
special attention. The proof proceeds by induction on the dimension. It is
interesting to observe that our proof of ergodicity in 4 dimensions, even for
self-avoiding polygons, relies on the knowledge of ergodicity for all
fixed-endpoints ensembles in d — 1 dimensions.

We have not yet conducted an empirical estimation of the autocorreia-
tion times of these new algorithms, but by analogy to Lal’s pivot algorithm,
it seems reasonable to hope that they produce an “effectively independent”
observation in computer time of order N? (or better), depending on the
observables in question. One can also consider algorithms which combine
our nonlocal moves with the local BFACF moves to sample SAWs with
fixed endpoints of varying length. These algorithms should be improvements
over pure BFACF with respect to autocorrelation times as well as
ergodicity. One such algorithm has recently been proposed and studied by
Caracciolo e al."*; we also prove the ergodicity of this algorithm.

The paper is organized as follows. Section 2 defines the algorithms and
sets the notation. Section 3 proves ergodicity in two dimensions, and
Section 4 proves ergodicity in all other dimensions. Finally, Section 5
resolves a related question that was left open in ref. 7 regarding ergodicity
of the variant of the pivot algorithm which only uses diagonal reflections.

2. STATEMENT OF RESULTS

We begin with notation and definitions. For a point x in ¢-dimen-
sional space 2% let (x"V,.., x') be its coordinate vector. Its /, norm is
(x| =|x"] + ... +|x@|. The d-dimensional integer lattice is

def . . .
29 = {(x",.., x“): x' is an integer for i=1,.., d}

An N-step self-avoiding walk (SAW) w in &9 is a sequence wgq, W,,..., Wy
of N+ 1 distinct points in 2 such that each point is a nearest neighbor of
its predecessor: |w,—w,_,| =1 for i=1,.., N. The points w, and w, are the
endpoints of w. For points 4 and B in 27 let S¥(4, B) be the set of all
N-step SAWs having wy=A4 and w, = B. Obsrve that S¥(4, B) is empty
unless N — |4 — B| is a nonnegative even integer.
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Given two points x, and x, in the d-dimensional real space ¢, let
[x,,x,] be the line segment {¢x,+ (1 —¢)x:0<¢r<1} oriented in the
direction of increasing ¢ Given a sequence of points xg,.., x; in #¢, let
[x0,-s X ] be the piecewise-linear curve resulting from the concatenation of
[x0, X1y [X15 X3 150 [Xp_1, X, ] With the associated orientations. Observe
that if N22 and wg, wy,.,wy is a SAW with |wy—wy| =1, then
[Wo, Wi,y Wy, Wo] 18 @ simple (i.c., non-self-intersecting) closed curve: a
self-avoiding polygon.

Our dynamic Monte Carlo algorithm on the fixed-length, fixed-
endpoints ensemble SV(A, B) works as follows. There is a finite set % «f
{F,,..., F,} of transformations of S¥(4, B) into itself (here, # and r depend
on N). Begin at time r=0 with any SAW w(® in S¥(4, B). At each
successive integer time ¢, knowing w''~'J, choose a number n(¢) at random
from {1,.., r} according to a fixed probability distribution® (e.g., uniform),
and put wtl=F, (wt~"). The resulting sequence wi®, wt'l w2l of
SAWs is a Markov chain on SV(4, B). The distribution of wll as t —» o
will converge to the uniform distribution on S¥(4, B) if (e.g., ref. 15):

Al. The transition probabilities are symmeiric: for every w', w”e
S¥(4, B),

Prob{wm — W/|W[171] — w//} =Pr0b{w[’] :Wr/‘w[r~l] — W'}

A2. For some w' e S¥(A4, B):

Prob{wl = iwl'~H=y1>0

(therefore, the chain is a aperiodic).

A3. The chain is ergodic: for every w’ and w” in S™(4, B), there is a
t > 0 such that

Prob{wtl=w|wl®l=w"} >0

In our algorithm, (A1) will follow directly from the fact that each F,
is its own inverse (it would suffice, in fact, just to have each F, invertible
and choose F; and F; ' with equal probabilities); (A2) will follow as each
w' is a fixed point of at least one F;e %. The bulk of this paper is devoted
to the proof of (A3).

3 In other Monte Carlo algorithms the set of transformations and the probability distribution
can depend on the current state, but the algorithms introduced in this paper are of the type
discussed above.
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We will now define the transformations F;. To do this, we will first
define some transformations 7, which perturb SAWs into objects that may
or may not be SAWs. Then, for w in S¥(4, B), we will put

T:(w) if T.(w)eS™(4, B)
F,-(W) = . N
if T,(w)¢S™(4, B)

In words: F, attempts to deform w; the deformation is accepted if the result
is a SAW and rejected otherwise.

Given a SAW w=(wg,.., wy) and integers k& and / such that
0<k<I<N, define the inversion T{j(w) to be the sequence w'=
(wg,-., wi) given by

i

L (Wt wi— e if k<i<!
w; otherwise

Thus, [wg,..,w;] is the curve [w,,.., w,] inverted through the point
(we+w,)/2. For d=2, this is a 180° rotation around {w, + w,)/2 as shown
in Fig. 2.

Another way to view this transformation is via the sequence of steps
Sis Sg,es Sy N W, where s; & w;—w;_;. The steps of T}:}(w) are s,
Sasees ks Spy S 1sees Sy 2s Sky1s Sig1s Sy. Observe that the inversions
T,‘(“,Z . »{w) are precisely the length-preserving BFACF moves.

Next we define transformations which reflect a piece of a SAW
through a hyperplane which makes angles of 45° with exactly two of the
coordinate hyperplanes. Consider the case d=2 first. For we S¥(4, B),
0<k<I<N, and me {—1, +1} define T;57™(w) as follows. If wi'’ —w{!) #

Wi !
Wy, ’
wy w;
DO U ’ ..........
1 def inv
w w =T, (w)

Fig. 2. Inversion transformation in %2
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wy wy
— e p—H gieseeeenes
w w' def Tref 1( )

Fig. 3. Reflection in the perpendicular bisector of [wy, w,].
2) w}f)) then put T;5"(w)=w; otherwise, put T 57(w)=
(wo,..., ~), where

,={<W‘kl>—m(w5311,»~w52>>, wd —m(wil),_—wi) if k<i<l

n otherwise

Thus [w},..., w;] is a reflection of [wy,.., w,] through the perpendicular
bisector of [w,, w,] if the line [w,, w,] has slope m. This is illustrated in
Fig. 3.
For d >3, we proceed similarly. For we SY(4, B), 0<k<I< N, me
{—1, +1}, and 1 <a<f<d, define T;%7 o(w) as follows. If wi® —w{) #
m(w® —w®) or if w£w® for some y+#a, B, then put T,i’eg;’:ﬁ(w)zw,
otherwise, put T,fig’,ﬂ(w)— (Wo»ens W), Where
w@ —m(wP ) —wE Ay if k<i<! and yisaorf

wr) otherw1se

In three or more dimensions we require one more class of transforma-
tions. For we SY(4, B), 0<k<I<N, me{—1, +1}, and I <a<f<d,
define T)37,(w) as follows. If w{®—w #m(wi—w), then put

T o(w) =w; otherwise, let w’ e T,‘("}a’”ﬁ(w) be the N-step walk whose

’

def
steps §; = w; — w;_, are

m-s® if k<i<! and y=a
m-s* if k<i<gl and y=8
sW otherwise

def
sl{(v) p

int,m

The interchange transformation T7";7,(w) interchanges the « and B
coordinates of the steps sy, 1, 53 1 }j}};:};(w) keeps the orientation of the
interchanged coordinates, while T}, ;(w) reverses them. Notice that if
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d>3 and w is contained in the hyperplane {x:x'"’'=0}, say, then
f p(w)and T }j",v(w) will also be contained in that hyperplane; the only
way to break out of the hyperplane is using 77, (w), where s{*) #0 for
some i€ {k + 1,.., [}. Thus, the T'™ transformations are necessary in three
or more dimensions; as shown in Section 3, they are not necessary for
ergodicity in two dimensions.

The transformations T; are now defined in 4 dimensions: there are

() G))

of them. A dynamic Monte Carlo algorithm may now be constructed as
described above, using the family of transformations

FN=(Fimy, Fbm  Fem c0<k<I<N,1<a<f<dandme {—1,1}}

obtained from the corresponding 7’s. We say that two SAWs w and w’ are
directly connected if w' = F(w) for some F in # % [equivalently, if w= F(w")
for some F in #7; observe that each F is its own inverse]. We say that w
and w' are comnected if there is a sequence of SAWs w[0],.., w[p] in
S™(A, B) such that w[0]=w, w[p]=w', and w[i—1] is directly connec-
ted to w[i] for each i=1,., p. Thus, ergodicity is equivalent to the
property that any two SAWs in S™(A4, B) are connected. This property will
be proven in the next section for d=2 and in Section 4 for higher dimen-
sions.

Remarks.

B1. In practice, the following Monte Carlo algorithm (or a variation
of it) may work more efficiently than the straightforward procedure
described above. First, pick a pair &, / from among all pairs 1 <k <IN
with some fixed probability distribution (e.g., uniform). Then, knowing
wt =1 =w, make a “short list” of all the F’s that are “candidates™ F" is
always on the list; F;%7; is on the list if w{* —w(® =m(w{® —w) and
w() =wi for all y #£a, B; Fi:7 4 is on the list if wi® —w{® =m(w(P — wP).
Choose an F uniformly from this short list and put wt1=Fw). It is
not hard to see that the transition probabilities are symmetric for this
algorithm.

B2. When implementing this algorithm, one could generalize the
definition of T;%7 ;(w) for d=3 as follows. If w{® —w{® £ m(w —wP),
then put .7 o(w) = w; otherwise, put T o(w) = (Wg,..., wly), where

w —m(wE ) — wl )y if k<i<! and yisaorf

w) otherwise

)=
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The definition given earlier is only the minimum necessary to ensure
ergodicity.

B3. Caracciolo et al."* have studied an algorithm (henceforth
referred to as the CPS algorithm) which uses the BFACF moves and
inversions. This generates a Markov chain on

S(4,B)E () sM4, B)

0

T8

which is the set of all SAWs beginning at 4 and ending at B. The proofs
given in Sections 3 and 4 imply that condition (A3) above holds for the
CPS algorithm, as will be briefly shown at the ends of those sections.

3. PROOF OF ERGODICITY IN TWO DIMENSIONS

Ergodicity will be proven by induction on the dimension 4. The first
step is d=2.

Theorem 1. Fix endpoints 4 and B in %2 and fix a length
N> |A— B| having the same parity as |4 — B|. Then the Monte Carlo
algorithm on S¥(4, B) is ergodic.

Proof. Let RY(A, B) be the set of all SAWs in S¥(4, B) which are
subsets of the boundary of some rectangle; that is, we R™(4, B) if there
exists ce Z? and integers k,, k, >0 such that

[W0>---a WN] < [C, c+ (kla O)a c+ (kls kz)o c+ (0, kZ)s C]

Notice that if we RY(4, B), then [wy,..., wy] has at most one right-angle

\a

Wys = Wk w7
Yo Wwis = W

Fig. 4. W(w) (thick lines and [wg, wy]) and Int(W/(w)) (shaded region).
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turn if N=|4—B| and 2, 3, or 4 right-angle turns if N>|4 — B|. The
theorem will follow once the following two statements are proven:

C1. Any SAW in S¥(A4, B) is connected to some SAW in R"(4, B).
C2. Any two SAWs in RY(A4, B) are connected.

We prove statement (C1) first; statement (C2) will be verified later in this
section. For w in S¥(4, B), let H(w) be the boundary of the convex hull of
w, considered as a subset of the plane, and let W{(w) =4 [Woy Wi Was Wo i
be the “trace” of w, including the line connecting w, and w,, as illustrated
in Fig. 4. We require the following lemma.

Lemma 1. If H(w)< W(w), then we RY(4, B).

Proof. If [wg, wy,.., wy] is the line segment [ 4, B], the result is
obvious. Otherwise, H(w) is a simple closed curve. Since [wg, w,..., wy]
does not intersect itself, it cannot contaln ali of H(w), so the hypothesis
implies that some point of (4, B) (— [4, BI\{4, B}) is in H(w). Since
[4, B] is in the convex hull of w, it follows that [A4, B] is a subset
of H(w). Let U= H(w)\(4, B). U is a curve with no self-intersections,
having endpoints 4 (—w,) and B (=w,), and U is contained in the
curve [wq, wy,.., wy], wWhich also has no self-intersections; hence U=
[wo, Wi,y wy] and H(w) = W(w). This implies that each line segment in U
is parallel to a coordinate axis. Since H(w)= Uwu (4, B) is the boundary of
a convex set, it follows that U consists of at most four line segments and
that U is contained in the boundary of some rectangle.

Next, we define a function f:S™(4, B)— % such that every w in
S™(4, B)\R"(4, B) is directly connected to a SAW w’ in S¥(4, B) satisfing
f(w')> f(w). As S¥(4, B) is a finite set, this will prove statement (Cl)
above. Following the proof of the theorem, we show that the range of f
contains at most N4/8 + 1 values.

Let W be a closed curve. For a point y in W* (the complement of W),
the winding number of W around y is

1y, )def 1 f dz
T 2mi wZ—7y

(here we view points of the plane as complex numbers). The properties of
winding numbers are well known: I(y, W) is an integer, 0 if y is in the
unbounded component of W, and +1 if W is a simple closed curve with
v in the bounded component of W*. Define

Ext(W)={ye W I(y, W)iseven}
Int(W)= {ye W I(y, W)is odd}

822/58/1-2-12
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Thus, Ext(W) uInt(W)u W is the entire plane. Roughly speaking, y is in
Int(W) if and only if y € W* and any curve from y to infinity crosses W an
odd number of times. Finally, we define f(w) to be the area of Int(W(w)),
as depicted in Fig. 4.

Now suppose we SV(4, B)\R"(4, B). From Lemma 1 there is a point
o€ H(w)\ W(w). This y, is an interior point of one of the line segments of
H(w). Let L be the (infinite) line containing this line segment and let £ and
{ be the unique integers (see Fig. 4) such that:

1. 0gk<I<KN.

2. wy, weL.

3. The line segment [w,, w,] contains y,.
4. w,¢Lforall je{k+1,.,1—1}

Let w'= T};‘,V(w); we show that w' is a SAW. Since w, and w, are
on the boundary of the convex hull of w, the closed half-plane having
boundary L and containing w, , , must contain all of the points of w. Since
w,; ¢ L for k < j<1, this closed half-plane contains none of the points w; for
k< j<I Hence w' is self-avoiding.

To show that f(w')> f(w), first abbreviate W= W(w) and W' =
W{w'). Let

Q= [Wi, Wi 15000 Wi 15 Wiy Wi ey Wiy 1, Wi ]

as shown in Fig. 5. Here [wy,..., w;] and [wy,..., w;] are simple curves, each
residing on a different side of L. Hence Q is a simple closed curve. Aside
from the points w, and w,, O is the symmetric difference

Q=W AW & (W\ W)U (W\W)

Fig. 5. W(w') and Q = [w,s, Wis, Wi7, Wig, W17, Wig, Wis
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It follows that for y in (Wu W')<,
1y, Q)=1I(y, W)+ I(y, W) (mod?2)
So
Int(Q) =Int(W) A4 Int(W’) = Int(WN\Int( W) U Int(W )\ Int( W)
To show that f(w') > f(w), we need to show that
area of [Int(W \Int(W)]>area of [Int(W)\Int(W")]

Now, there is a circular neighborhood N centered at y, which does not
intersect Wu W’ (see Fig. 5). Also, y,e Int(W N\ Int(W). Therefore:

L Int(W'N\Int(W) contains Int([w}, wi ., Wy, wi])U N, which
has area

i[area of Int(Q)] + 3[area of (N)]

2. Int(W)\Int(W') is contained in Int([w}, Wi, 1, Wi, Wi I\ N,
which has area
3[area of Int(Q)] — i(area of N)

Therefore f(w') — f(w) = (area of N); in particular, f(w'}> f(w) and state-
ment (C1) is proven.

It remains to prove statement (C2). We distinguish between two cases:
N=|A—B| and N>|4—B|.

1. N=|A—-B|: If [4, B] is parallel to a coordinate axis, then
SY(A4, B) consists of only one SAW. Otherwise, there are exactly two
SAWs in R(4, B), say w and w', and w'= T (w).

2. N>|A—B|: By rotating the coordinate system if necessary, we
can assume A< B and A% > B®. Let w* be the unique SAW in
RM(A, B) having wf=A4—(0,1) and w% ,=B—(0,1). Let w be an
arbitrary SAW in R™(4, B); we will show that w is connected to w*. We
may assume that either min{w{®:0< <N} <min{4®, B®} or there
exists an integer J<A" such that [wgy, w,,.,wy]=[4, (J, 4?),
(J, B®), B] [if not, replace w by Ty(w)]. In particular, w, is either
A—(0,1)or 4—(1,0). If w,=A4—(0, 1), put w =w; otherwise, we define
w’ as follows. Let

k< max {i:w,=A— (i, 0)}
def . .
{=max{iiw,=w,—(0,i—k)}

m= max{izw,=w,+ (0,i—/)}
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Thus w,, w,, and w,, are three of the corners of the rectangle determined
by w. Now define (see Fig. 6) the SAWs

wtI =T (w)
2 £, 1 1
wt = Tlrikfl,l+k+1(w[ B

w' =T (W)
Now w’ is in R¥(4, B), w;=A4— (0, 1) and w)y_, equals either B— (0, 1)
or B+(1,0) If wy_,=B—(0,1), then w'=w* and we are done.
Otherwise, wyy_,;=B+(1,0), and we can repeat the algorithm of the
preceding paragraph (with the necessary trivial modifications) to show that
w’ is connected to a SAW w” in R¥(A4, B) with w},_,=B—(0,1) and w{ =
A—(0, 1); but then w” =w* and Theorem 1 is proven. J

We now show that the function f(w) & area of Int(W{(w)), defined in
the above proof, attains at most N*4/8 + 1 values. This implies that every
SAW is connected to a SAW in RY(A4, B) via a sequence of at most N*/8
inversions. The last part of the proof above implies that any two SAWs in
R™(A, B) are connected via a sequence of at most 16 transformations. It
follows that every two SAWs in S™(A4, B) are connected via a sequence of
at most N*/4 + 16 transformations.

If AV =B or A® = B®, then W(w) follows grid lines and the area
f(w) is an integer between 0 and N?/4. Otherwise, assume, without loss of
generality, that A"V < B and 4® < B®, Redraw w in the plane, mapping
w,=(w"), w?) to the planar point ((B® —A@)w), (B —A4D)pw?),
This ensures that the line [ A4, B] is at 45° with the coordinate axes and
goes through at least one grid point. Hence, the area of the redrawn
Int(W(w)) is an integer multiple of 1/2. Yet the redrawn area is
(B — AW (B — 4®) times larger than the (original) area of Int(W(w)).
Thus, the area of Int(W(w)) is an integer multiple of 1/[2(B™ — A™)
(B® — A@)]. The area of Int(W(w)) is at most N?/4; hence f(w) attains
at most (N?%/4) 2(B" — AM)B® — A@)+ 1 < N*/8 + 1 values.

Wp—e A A A
; : wi :
wy L lw, 5 a :lel] I+k41 :UIE] :w;n
wy Witk+1
wﬁ]l w Wik
w Wil e W

Fig. 6. Transforming a SAW in R"Y(4, B) into another.
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Corollary 1. The CPS algorithm is ergodic in 2>

Proof. As shown above, any SAW in S¥(4, B) is connected to some
SAW in R"(4, B) by a sequence of inversions. It is easy to see that any two
SAWs in U%_, RY(4, B) are connected by BFACF moves. [We remark
that the subset of length-conserving BFACF moves alone does not connect
all SAWs in S¥(4, B); see ref. 5.7 |

4. PROOF OF ERGODICITY IN HIGHER DIMENSIONS

Throughout this section, we assume that the dimension d is at least 3.
Let w=wg,..., wy be a SAW in 27 For ie {1,.., N}, exactly one of the d
components of the ith step s, = w,—w,_, is +1 and the rest are zero. If
s = +1, we say that s, is a step in the &th coordinate and write
coor(s;) = J. A sequence w;,..., w, where 0 < j< k< N is a segment of w. Its
length is k — j; it steps are s;, ,.., S;. A segment wi,.., wy is straight if all
its steps are identical: s5;, , = --- =5, (a segment of length 0 or 1 is always
straight). A straight segment is in the dth coordinate if one (hence all) of
its steps are in the dth coordinate. A straight segment of w is maximal if
it is not contained in any other straight segment of w. A maximal straight
segment has length of at least 1. Every SAW “decomposes” uniquely into
maximal straight segments that intersect only at their endpoints.

Let w be a SAW that decomposes into m maximal straight segments,
and suppose that the ith segment is in the ¢,th coordinate. w is canonical
if (1) 6,#96;for all 1<i<j<m, or (2) 6,#9; for all 1<i< j<m and
Sp= —Sy.

In the first case, the length of wis |wy — wy| and w 18 a minimal length
canonical walk. The two types of canonical SAWs in & are illustrated in
Fig. 7.

Let A, Be &9 We show that

D1. Every SAW in S¥(4, B) can be transformed into a canonical
SAW in SY(4, B) via at most (;N*+ 18)(N>+1)?~>—2 transformations
in #1.

D2. Any canonical SAW in S™(4, B) can be transformed into any
other canonical SAW in S¥(4, B) via at most d?/2 transformations in % ¥.

B B

Fig. 7. Canonical SAWs.
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Therefore, any SAW in S¥(4, B) can be transformed into any other SAW
in $¥(4, B) via at most 2[(AN*+ 18)(N?+ 1)¥~2—2] +d?/2 transforma-
tions in & §. For large N, this is less than N%. We begin by proving state-
ment (D1); statement (D2) will be verified in Lemma 3. We first need the
following simple lemma.

Lemma 2. Let we SY(4, B) be a minimal-length canonical SAW
that is not straight and let xe {w,.., wy_,}. Then x ¢ Ty (w).

Proof. x=w,for some 0 <7< N. Since the walk is not straight, there
are two distinct coordinates d; and &, such that §, = coor(s;) for some i <7
and ¢, =coor(s;) for some j>1I Since w is a minimal-length canonical
SAW, (1) x5 4@ and (2) x'%) = B2,

Suppose that xew’. Then x=w/, for some 0<J<N. Now w/®) =
x'%2 £ B implies that w’, precedes (or is in the middle of) the segment of
w’ that is in the J,th coordinate. But w' 4 Ti(w) is a minimal-length
canonical SAW in which the (unique) segment in the J,th coordinate
precedes the (unique) segment in the &,th coordinate, hence x’=
w9 = 4@ contradicting (1). |

We now prove by induction on d that if 4, Be 7 then every SAW
in S¥(A, B) can be transformed into a canonical SAW in S™(4, B) via at

most
def

fa= GN 4+ 18)(N?+ 1) 2=-2

transformations in % J. In the last section we saw that any SAW in %2 can
be transformed into a canonical SAW via at most :N*+ 16 transforma-
tions in # 3. This provides the induction basis. For §e {1,.., d}, a subset
H of Zis a 5-hyperplane if x® = y'® for all x, y e H. We prove the induc-
tion step by creating successively larger SAWSs in d-hyperplanes, then using
the induction hypothesis to transform them into canonical SAWs. Appeal-
ing to geometric intuition, our terminology refers to the dth coordinate
axis as vertical. We therefore say that a point x € 7 is higher (lower) than
a point ye 9 if x> y@ (x9 < y @), We say that x is directly above
(directly below) y if, in addition, x® = y* for all 5 € {1,.., d—1}. We also
say that a step of w is vertical if it is a step in the dth coordinate and that
it is horizontal otherwise. A segment is vertical if all its steps are vertical
and horizontal if all its steps are horizontal. Define

top(w) & max{w®: 0<i< N}

to be the dth component of the “highest” vertices in w and let the fop
hyperplane

Top(w) £ {x: x¥ = top(w)}
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be the “highest” d-hyperplane containing a vertex of w. All the figures from
here on represent our three-dimensional intuition; they are given merely to
help visualize the definitions. To prove the induction step, we establish the
following claim.

Claim. For all 4, Be ¢ every SAW we SV(4, B) can either be
transformed to a canonical SAW in S¥(A, B) via at most f,_; transforma-
tions in & ; or it can be transformed via at most f,_, + 2 transformations
in #9 to a SAW w'e S¥(4, B) such that (1) top(w’)>top(w) (“w’ has
a higher top thanw”), or (2) top(w’)=top(w) and |w nTop(w')| >
|[wn Top(w)| (“w’ has the same top as w with more vertices in the top
hyperplane”). |

Since A <top(w) < A + N and |w n Top(w)| < N for every walk in
SN(A, B), after at most N? applications of this process, we obtain a SAW
that is either canonical or can be transformed to a canonical SAW using
at most f, , transformations. Therefore, every SAW in S¥(4, B) can be
transformed to a canonical SAW. The number of transformations required
is at most

(fer +2)N* 4/
= [(AN*+18)(N2+ 1) 3] N2+ (4N * + 18)(N2 4+ 1)7 > -2
= (IN*+ 18)(N2+ 1) 22
=Ja

Proof of Claim. The proof covers many individual cases and is there-
fore somewhat involved. A schematic flow chart describing these cases is
given in Fig. 16, at the end of the paper.

Consider the intersection of w and Top(w). There are two possibilities.

1. wnTop(w) consists of several, necessarily disjoint, SAWs. Then
there are two integers ¢, and #,>¢, + 1 such that w,, w,€Top(w) and
w; ¢ Top{w) for all 1, <i<t,. In this case, w' T;i”,z(w) is a SAW with
top(w’) > top(w) as illustrated in Fig. 8.

2. wnTop(w) consists of a single SAW. Then there are two (possibly
identical) integers ¢, and ¢, > ¢, such that w,e Top(w) for all t1 i<1t,, and
w; ¢ Top(w) for all 0<<i< ¢, and all ¢, <i< N. Since Wy s Wy, 18 contained
in Top(w), it is a (d— 1)-dimensional SAW. Also, w has no other vertices
in Top(w). By the induction hypothesis, w, ,..., w,, can be transformed via
at most f, ; transformations in #5 =% into a canonical SAW in
Top(w). We further distinguish between two possibilities.
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w w' & Timy (w)

Fig. 8. wn Top(w) consists of several SAWs.

(a) w,,.., w, is not minimal Jength. Then, the first and last straight
segments of w, ,.., w,, are in the same coordinate, say J. Necessarily, 6 # d
and s, , = —s,; let m=5%), . Let ¢ be the penultimate vertex in the first

segment dof W, w,, and let ¢” be the second vertex in the last segment.
Then w' = TP0% ,(w) is a SAW with top(w') = top(w) + 1 as illustrated in
Fig. 9.

(b) w,,.., w, is a minimal-length canonical SAW. If the segments
Wo,-y W, and w,,,.., wy are both straight, then w is canonical (this also
takes care of the case 1{ =0 and ¢, = N). If not, then there is an integer Ie
{1,.; N} = {t{,., 1+ 1} such that s, is horizontal: s{*’ = 0. We distinguish
between two cases:

(i) w, ., w, is straight: 5, ,; = -.- =5, (this case includes ¢, = t,). If
the walk is contained in a hyperplane, then by the induction hypothesis it
can be transformed into a canonical SAW.* Otherwise, let & =coor(s,,);
choose a coordinate « different from ¢ and d. Since w is not contained in
a hyperplane, there exists a nonzero real number b such that the hyper-
plane {xeZ" b(x® —w)+(xD—-w?)=0} contains w,,..,w, and

wt”

,def Tlnt,+1 ( )

w t',t";6,d

Fig. 9. w,,.., w,, is not minimal length.
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Wy, Wy,
Wy v Wy
d) _ (d) __
s =1 s =0
Fig. 10. Two-dimensional view when w, ,..., w,, is straight.

at least one other vertex w, of w, and that the half-space {xe2“
b(x® —wP)+ (x@—wl?)<0} contains all of w. Without loss of
generality, u>¢, and w; is not in this hyperplane for every je
{t,+1,.,u—1}. Then w' o T™ (w) is self-avoiding. Now, ¢, and u were

n.u
chosen so that wi¥ <w! =top(w) for all r,<i<u and w!? <wl.
Therefore, if wi¥) <w!? for some i€ {t,+ 1,.., u— 1}, then w’ has a higher
top than w; otherwise, w}, ;€ Top(w) as s’ =0, hence w’ has the same

top with more vertices. These cases are illustrated in Figs. 10a and 10b.

(i) The minimal-length canonical SAW w, ..., w, is not straight.
This case is more involved. Let

sec(w) £ max{k < top(w): w =w'?, =k for some i€ {0,., N—1}}
and let

Sec(w) £ {xe &% x4 = sec(w)}

Visually, if we trace the SAW w, then Sec(w) is the second highest
d-hyperplane containing a horizontal line. Since the segments wy,..., w,, and
Wi, Wy are not both straight, sec(w) and Sec(w) are well defined.
Without loss of generality, assume that Sec(w) contains a segment w,, w, . ,
for i>1t,. Let
u & min{ie {t,,., N}: w,eSec(w)}}
and let
u, = min{ie {u; + 1,.., N}: w,e Sec(w)}

Defined this way, u, is the first integer larger than 7, such that w,, is in
Sec(w) but is not directly below w,,. Define t to be the unique point in

* We use a slight generalization of the induction hypothesis that allows the SAWs to be in any
(d— 1)-dimensional coordinate hyperplane of 29, not just 241,
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T Wi T Wy
@ @eeees 2 Top(w) I TOURN 2
Wy, Wy Wy Woy
..... 1 Sec(w) 2{ !
d) _ d)
(a) s =0 (b) i) =1
Fig. 11. Two-dimensional view when w, ..., w,, is not straight.

Top(w) directly above w,,. Note that t is not necessarily in w. There are
two possibilities for s,,. Either s&)=0, and then u, =u, + 1, or s’ =1, and
then u, + 1 <u, and w{¥ <sec(w)=w{?=w!? for all u, <i<u,. These
possibilities are illustrated in Figs. 11a and 11b.

The case where s\ =0 is easier and we consider it first. At w,,, the
walk can end (w,,=B), continue horizontally (s{,,=0), go down

s@) = 1) or up (s, =1). In the first three cases, let v, = u,. If the
w+1 p uy+ 1

walk goes up, then by choice of sec(w), it goes straight up, then ends at B;

in that case, let v2 =N
If 7 is not in w, then w' I piny (w) is self-avoiding with a higher top

1,02
(if v, # u,) or with the same top and one more vertex in the top (if v, = u,).
If T € w, then, since w,,,..., w,, is a minimal-length canonical SAW that is not

straight w,, cannot be t (which is adjacent to w,,). Therefore, by Lemma 2,

* T;:“’,Z( ) does not contain 7 and |w* N Top(w*)| = |wn Top(w)|. So

we can let w' = Tg“;z(w ). From here on, we assume that s{)=1. We

distinguish among three possibilities.

A. 1¢w (see Fig. 12a). Then w' = T;™ (w) has a higher top. To see
that it is self-avoiding, note that the segment wy,.., w), is the original
self-avoiding segment wy,.., w,, and the segment w;,,.., w) is the original
segment w,,,.., wy. The segment wj,,,,.., w, ., _, _; (originating from
Wy, ¢ 155 W, _ 1) lies strictly above Top(w) where there are no other vertices
of w'. The segment w;, , ,,_,,,.., w,, (originating from w,,..., w,,) lies in the
straight line connecting T and w,, where there are no other vertices of w'.

B. tew and t#w, (see Fig. 12b). As we did in Case 2b(ii), first let
wr &1 :?sz(W) Since w,,..,w, is a minimal-length canonical walk,
Lemma 2 implies that 7 is not in w*, the new walk has the same top as w

and the same number of vertices on top. Hence we are back in case A.

C. tewand t=w, (see Fig. 12c). Let w,, be the last point of w that

is in Sec(w). Since Sec(w) contains at least one horizontal segment, u; # u,.

At w,, the walk can end (w, =B), go down (s’ = —1), or up
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Wty Wy, = B
Wy, w
e T t2 A
Wys Wz
Wy, Way _Eflz Wy -
(a) Téw (b) T€w7T#wil (C) TEW, T =Wy

Fig. 12. Three-dimensional view when s = 1.

(su3+1 1). If it ends or goes down, let v, o u3 Otherwise, the walk goes

stralght up and then ends at w, = B; let v, LN Tt is easy to verify that

1 inv (w) has a higher top than w; we show that it is self-avoiding. Let

1, v

w,, be tllle3 vertex of w that lies in the d-hyperplane containing w,, directly
above w,,. The segment wy,..., w; _, is the original segment wy,..., w,,_,; no
vertex in it coincides with an earlier one. The segment wy,,.., w} , ,,_, 15 a
rigid transformation of w, .., w,, and therefore it does not intersect itself.
It lies on the d-hyperplane Top(w) or above it where there are no other
vertices of w' [we are in case 2, which assumes that w n Top(w) is a single
SAW ]. The straight segment w; . ., 41, Wi 10,1 (Originating from
Wiyt 150 Wy, 1) lies directly below wy ., and is strictly higher than w,,
The only other vertices of w’ in that region are directly below w; and there-
fore do not coincide. The segment w; ,, .., w, originating from
Wi s W, lies in the d-hyperplane {x: x“)=w{?}. The only other vertex of
w' in this hyperplane belongs to the vertical segment wy,..., w; . Denote the
vertex, if it exists, by w,=w,. If w} does not intersect the segment, then w’
is a SAW, as w; . ,., w)y is the original w,, .., wy, lying lower than

Sec( ). If w; intersects the segment, then, as in case 2b(ii), we first let

% & piny (w) and then w' = & pinv (w*). To show that w' is self-avoiding,

1,0 1,03
we need only show that w/, does 1no‘[ intersect the segment wy, , .., ., Wi,
at w,, (originating from w, ) or at w},, ., (originating from w,). w, does
not coincide with w;, as w;, is indirectly above w,,, whereas w/, is directly
above w,,. w; does not coincide with wj . ., as w; ., _, is directly
below w; ., _, (originating from w,), whereas w) is directly below
Wi 4 —u, (Originating fromw,,). |

It remains to prove statement (D2).
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Lemma 3. Any canonical SAW in S"(4, B} can be transformed
into any other canonical SAW in S¥(A, B) using at most d*/2 transforma-
tions in & 1.

Proof. Let w and w' be canonical SAWs in S™(4, B). We distinguish
between canonical SAWs that are minimal length and thosée that are not.

1. N=|A— B|. Then both w and w’ consist of the same number of
maximal straight segments. The segments corresponding to each coordinate
are of the same length. The only difference is the order of the segments. The
order of two consecutive segments can be reversed using one inversion
transformation. Hence any order can be achieved using at most

(d—1)+(d—2)+ - +1=dd—1)/2

inversion transformations.

2. N>|A-B|. If wand w' are contained in the same two-dimen-
sional plane, then the three transformations illustrated in Fig. 6 and one
additional inversion suffice to transform w into w'. [A canonical SAW is a
special case of a SAW in R™(4, B).] Otherwise, let =coor(s;) and
&= coor(s)).

(a) If 6=¢, then s, =5} or s, = —s}. The SAWs w and w’ [or, in the
latter case, w and T(i)f',vv(w)] decompose into the same maximal straight
segments; the d-coordinate segments are first and last, while the other
segments appear in possibly different order. Using at most (d—2)(d—3)/2
inversion transformations as above, the order of the segments can be
modified.

(b) If6+#¢, assume d <& Any o€ {1,.., d}\{J, ¢} is the coordinate of
a maximal straight segment in w if and only if it is the coordinate of a
maximal straight segment of w’ and these two segments arc of equal
lengths. Using at most d—2 inversion transformations, “move” the
g-coordinate segment of w, if it exists, so that it is first. Call the new SAW
wil Let w21 & T (wi), where k=140 — B®| +14® — B®| and
where m = 1 if s{'1® = s[13® and m = —1 otherwise (this ensures that w*]
is self-avoiding). Now, w(?! is canonical and coor(s{*1) = coor(s})=¢, so
we are in case (a) and at most (d—2)(d—3)/2+ 1 inversion transforma-
tions are needed to transform w!?! into w’. The full details are left to the
reader.

The total number of transformations used is at most (d—2)+1+
(d—2)0(d—3)2+1<d*2. 1

Corollary 2. The CPS algorithm is ergodic in Z“ for d = 3.
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Proof. Reflection and interchange transformations were used in the
above proofs only in Lemma 3 and case 2a in the proof of the claim to
show that when w n Top(w) is a canonical walk that is not minimal, w can
be transformed to a walk with a higher top.

It is easy to see that in both cases, BFACF moves can be substituted
for reflection and interchange transformations. |

5. A SINGLE TRANSFORMATION FOR TWO-DIMENSIONAL
SAWS WITH FIXED LENGTH AND FREE ENDPOINTS

In this section we return to self-avoiding walks in two dimensions, but
we focus on the free-endpoint ensemble: SV(A4), the set of all N-step SAWs
in Z? with wy= A. The pivot algorithm'®"!®) is a highly efficient Monte
Carlo algorithm on S™(A4), in which the set of transformations & ) consists
of: (i) reflections through vertical and horizontal lines, (ii) reflections
through lines of slope + 1, (iii) 180° rotations, (iv) 90° rotations.

In all cases, the transformation is applied to a segment of the form
Wi, Wi o150 Wy, With 0 <k << N. Tt was shown in ref. 7 that this algorithm
is ergodic, even if # % includes only classes (i) and (ii), or (i) and (iv), or
(ii) and (iii), or (ii) and (iv) of transformations; however, the algorithm is
not ergodic if # % only includes the class (i), or (iii), or (iv). In this section,
we prove that class (i) alone suffices for ergodicity. In fact, we show that
any SAW in S"(A4) can be transformed into any other SAW in S¥(A4) by
at most 2N transformations fromf class (ii); the best bound proven before
now is 4N, even when % 5 contains all four classes. Our result is also useful
if one wants to write the simplest possible computer program for the pivot
algorithm.

For an SAW w=w,,.,w,, an integer ke {0,., N}, and me

{—1, +1}, define the reflection transformation 777(w) & (Wg ..y Wiy bY

, def [W; for 0<i<gk

! {(w}:)—i—m(wﬁz’—w}f)),w}f’+m(w§”—w§j))) for k<i<N

As shown in Fig. 13, 77" reflects the tail of w, from w, to wy, in the line
of slope m going through w,. Therefore, T7(w) is a walk of length N
starting at wy. However, it is not necessarily self-avoiding. Note also that
Ty is its own inverse: T;(T7'(w)) =w.

A diagonal support line (DSL) of a walk w at w, is a line of slope 1
or —1 containing w, such that all vertices of w liec on one of its sides. As
illustrated in Fig. 14, if w has a DSL of slope m at w,, then T/(w) is
self-avoiding, hence in S™(w,). To see this analytically, note that w has a
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WN

% Wi

m= -1 m= —1
w T (w)

Fig. 13. Reflection at w, with m= —1.

diagonal support line at wy if (Wi —mw®) — (W) — mw?) has the same
sign for all 0<<i< N. Hence, for k<i<N,
wi—mw @ =w +m(w® —w) —m(w® +m(w{" —wi"))
= 200 ) — (15— )
Hence,
(w; D —mw;P)— (W —mwP) = —[(w" —mw ) — (W) —mw )]

Therefore, the tail of w is mapped to a side of the DSL that previously
contained no vertices of w.

For 1<dief< N, the ith step of an N-step SAW w=w,,.., wy is the
increment 5; = w,—w,_,. A vertex w, of a walk w is a turn vertex of w if
O<i<N and s,#s;,,. A SAW is straight if it has no turn vertices.

The next lemma shows that if a walk we S¥(A4) is not straight, then
there is a turn vertex w, and me {—1, +1} such that 7;*(w) has one turn

wN

WwN
Wk Wk

m=1 Wo m=1 Wo
w 7 (w)

Fig. 14. Reflection in a diagonal support line at wy.
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vertex less than w. Therefore, any SAW can be transformed into a straight
SAW by a sequence of at most N — 1 reflections. Since two reflections suf-
fice to transform any straight SAW into any other, and since any reflection
transformation is its own inverse, it follows that any SAW in S¥(A4) can be
transformed into any other using at most 2N successive transformation.

Lemma 4. For any SAW w that is not straight, there are 0<k< N
and me {—1, +1} such that 7}'(w) has one turn less than w.

Proof. The following observations can be easily verified.

1. If wyis a turn vertex of we S¥(A4) and T}*(w) is self-avoiding, then
T7(w) has one less turn than w.

2. All SAW consisting of more than a single vertex have four distinct
DSLs.

3. All intersections of a SAW with a DSL are either end vertices or
turn vertices.

If one of the DSLs whose slope is m intersects w at a turn vertex w,, then,
from Observation 1, the reflection 77(w) is a SAW with one turn vertex
less than w. Otherwise, two DSLs, one with slope 1 and the other with
slope —1, intersect at w, and the other two DSLs intersect at w,,.
Necessarily, then, the first and last step of w are identical: s, =5, (see
Fig. 15a). Consider the two DSLs that intersect at w,. “Slide” them
simultaneously in the —s, direction until at least one of them contains two
or more vertices of w (see Fig. 15b). Let m be the slope of that DSL,’ let
w, be the last vertex (maximal /) contained in the DSL, and let w, be any
other vertex contained in the DSL. The segment of w from w, to wy is
straight. We show that w, must be a turn vertex.

*If both DSLs contain two or more vertices of w, as in Fig. 15b, pick one of them arbitrarily.

wN wN

(a) (b) (c)

Fig. 15. Reducing the number of turns when DSLs hit endpoints.
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START

w( Top(w)
is a single SAW?

an inversion

increases height

w () Top(w)
is minimal length?

an interchange

increases height

yes walk is canonical
STOP

an inversion increases either

Wos - Wy
and wy,, ... wy are

straight?

w ) Top(w)
is straight?

height or number of vertices on top

invert
w (] Top(w)

an inversion
increases height

|

Fig. 16. Flow chart for the proof of statement (D1), Section 4.

invert

w () Top{w)
yes (C)

By construction, if the DSL is perturbed in the direction of s,, it inter-
sects w only once, in the vicinity of w,. Hence w, is either a turn or an end
vertex. If it is an end vertex, it must be wg; but this is impossible because
s, =sy; hence any line perturbed from w, in the direction of s, = s, inter-
sects the segment from w, to w,. Therefore wj is a turn vertex.

To see that T7(w) is self-avoiding, note that the two DSLs containing
wo and the two modified DSLs form a (tilted) rectangle (wq, o, w,, f in
Fig. 15b). The segment of w between w, and w, is contained in the rectangle
and the segment between w, and w, is straight. Hence, after the reflection,
the segment between w, and w), will all be outside the rectangle and will
not intersect the segment from w{ to wy.

Hence w, is a turn vertex and T}'(w) is self-avoiding. From Observa-
tion 1, T7*(w) has one turn vertex less than w. |
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