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We propose a new class of dynamic Monte Carlo algorithms for generating self- 
avoiding walks uniformly from the ensemble with fixed endpoints and fixed 
length in any dimension, and prove that these algorithms are ergodic in all 
cases. We also prove the ergodicity of a variant of the pivot algorithm. 
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1. I N T R O D U C T I O N  

The self-avoiding walk (SAW) is a widely studied lattice model of a 
polymer molecule with excluded volume. (1'2) It is also important in the 
study of critical phenomena, since it is equivalent to the N = 0 limit of the 
N-vector model, o~ 

Through the years, many dynamic Monte Carlo algorithms have been 
used to study the SAW. Their strategy is as follows: begin with an arbitrary 
SAW; make some random change to it to get another SAW; repeat. This 
produces a random (correlated) sequence of SAWs, from which statistics 
may be taken. A "local" algorithm is one in which the random change is 
always restricted to a bounded number of adjacent bonds (typically three 
or less). Local methods have been widely used (for a survey, see ref. 4), but 
they suffer from two difficulties: (1)The resulting sequence of SAWs is 
highly correlated, and (2)if the changes are length-conserving as well as 
local, then the algorithm will not be ergodic (s) (i.e., given any initial N-step 
SAW, there exist many other N-step SAWs which can never be produced 
by the algorithm). 
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In contrast, the pivot algorithm invented by Lal (6) makes nonlocal 
changes to SAWs of fixed length N: a pivot point is chosen at random on 
the SAW, and a random reflection/rotation is applied to the part of the 
SAW subsequent to the pivot point, using the pivot point as the origin. 
Several attempts may be necessary, but when a change is successful, the 
resulting SAW will likely be "very different" (with respect to global 
observables such as end-to-end distance). In practice, this Monte Carlo 
procedure seems to produce an "effectively independent" observation in 
computer time of order N (or perhaps N log N), in the sense that the 
variance of a global observable is proportional to N (or perhaps Nlog N) 
divided by the total amount of computer time (see ref. 7, Sections 3.2-3.4 
for more details). In addition, it is ergodic (any N-step SAW can be trans- 
formed into any other by a sequence of allowed changes), and satisfies 
detailed balance (or "reversibility") for the usual equal-weight probability 
distribution on the set of N-step SAWs. 

We remark that nonlocal changes are usually rather "nonphysical"; 
thus, if one wishes to investigate the dynamics of polymer molecules, then 
local changes may be more appropriate. However, if one is interested only 
in equilibrium expectation values of a particular model, then there can be 
no objection to nonlocal moves if they are more efficient. Indeed, in view 
of (2) above, any algorithm for the fixed-length ensemble of SAWs in 
principle MUST use nonlocal changes. 

It is also of interest to study the subclass of SAWs with fixed 
endpoints. In particular, if the endpoints are nearest neighbors, then this is 
the subclass of "self-avoiding polygons" (which one can think of as simple 
closed curves). Berg and Foerster (s) and Aragfio de Carvalho e ta l .  (9'1~ 

( "BFACF' )  proposed a "local" Monte Carlo algorithm (see Fig. 1) that 
generates SAWs with fixed endpoints, allowing N to change. This algo- 
rithm can ~ be very slow; in fact, its exponential autocorrelation time is 
infinite. (11) Moreover, there are ergodicity problems in three dimensions, 
since the knot type of a self-avoiding polygon cannot be changed by the 
BFACF moves. 

" .......... I .... . . . . . .  

.......... i i .......... 
Fig. 1. Moves in the BFACF algorithm. The second move changes the length by 2. 
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To investigate the fixed-endpoints ensemble, one would like a set of 
nonlocal moves which could speed up the BFACF algorithm and make it 
ergodic. D u b i n s e t a L  (12) devised a length-conserving algorithm for self- 
avoiding polygons in two dimensions and proved its ergodicity. 

In this paper, we propose a new class of algorithms for fixed-length, 
fixed-endpoints ensembles of SAWs on the simple (hyper) cubic lattice 
in any dimension. We also prove that they are ergodic in all cases; in 
particular, knots appear and disappear routinely, without requiring any 
special attention. The proof proceeds by induction on the dimension. It is 
interesting to observe that our proof of ergodicity in d dimensions, even for 
self-avoiding polygons, relies on the knowledge of ergodicity for all 
fixed-endpoints ensembles in d -  1 dimensions. 

We have not yet conducted an empirical estimation of the autocorrela- 
tion times of these new algorithms, but by analogy to Lal's pivot algorithm, 
it seems reasonable to hope that they produce an "effectively independent" 
observation in computer time of order N 2 (or  better), depending on the 
observables in question. One can also consider algorithms which combine 
our nonlocal moves with the local BFACF moves to sample SAWs with 
fixed endpoints of varying length. These algorithms should be improvements 
over pure BFACF with respect to autocorrelation times as well as 
ergodicity. One such algorithm has recently been proposed and studied by 
Caracciolo et a/.(14); we also prove the ergodicity of this algorithm. 

The paper is organized as follows. Section 2 defines the algorithms and 
sets the notation. Section 3 proves ergodicity in two dimensions, and 
Section 4 proves ergodicity in all other dimensions. Finally, Section 5 
resolves a related question that was left open in ref. 7 regarding ergodicity 
of the variant of the pivot algorithm which only uses diagonal reflections. 

2. S T A T E M E N T  OF R E S U L T S  

We begin with notation and defnitions. For a point x in d-dimen- 
sional space NJ, let (x (1) ..... x (a)) be its coordinate vector. Its Ii norm is 
[xl = Ix(~)[ + .-- + Ix(a) I. The d-dimensional integer lattice is 

y,a de=_f {(X(1),... ' X(d)): x(i) is an integer for i =  1 ..... d} 

An N-step self-avoiding walk (SA  W) w in ~ d  is a sequence Wo, wl,..., wx 
of N +  1 distinct points in ~ d  such that each point is a nearest neighbor of 
its predecessor: [w i -  wi 11 = 1 for i =  1 ..... N. The points Wo and WN are the 
endpoints of w. For points A and B in ~ed, let SN(A, B) be the set of all 
N-step SAWs having w 0 = A and w u = B. Obsrve that SN(A, B) is empty 
unless N- -  JA -- BI is a nonnegative even integer. 
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Given two points x 1 and x2 in the d-dimensional real space Nd, let 
[x l ,  x2] be the line segment {tx 2 + (1 - t) xl: 0 ~ t ~< 1 } oriented in the 
direction of increasing t. Given a sequence of points Xo,..., x~ in Nd, let 
[Xo ..... x~] be the piecewise-linear curve resulting from the concatenation of 
[Xo, x l ] ,  [x l ,  x2] ..... [xk_ 1, xk] with the associated orientations. Observe 
that if N~>2 and Wo, W~ ..... WN is a SAW with IWo--wN]=l, then 
[w0, w~,..., WN, W0] is a simple (i.e., non-self-intersecting) closed curve: a 
self-avoiding polygon. 

Our dynamic Monte Carlo algorithm on the fixed-length, fixed- 
endpoints ensemble SN(A, B) works as follows. There is a finite set ~,~ ~f 
{F~ ..... Fr} of transformations of SN(A, B) into itself (here, ~ and r depend 
on N). Begin at time t = 0  with any SAW w [~ in SN(A,B). At each 
successive integer time t, knowing w [ ' -  1], choose a number n(t) at random 
from { 1 ..... r} according to a fixed probability distribution 3 (e.g., uniform), 
and put w p] =Fn(,)(w ['- 1]). The resulting sequence w [~ w [~], W [ 2 ]  . . . .  of 
SAWs is a Markov chain o n  SN(A, B). The distribution of w It] as t--* oo 
will converge to the uniform distribution o n  SN(A, B) if (e.g., ref. 15): 

A1. The transition probabilities are symmetric: for every w', w"e 
SN(A, B), 

Prob{w[ ' ]=w' lw [' l ~ = w " } = P r o b { w [ ' ] = w " l w [ ' - l ] = w ' }  

A2. For  some w' ~ SN(A, B): 

Prob{w[']=w'rw['  1 1 = w ' } > 0  

(therefore, the chain is a aperiodic). 

A3. The chain is ergodic: for every w' and w" in SN(A, B), there is a 
t > 0 such that 

Prob{w ['] = w' l w [~ ] = w" } > 0 

In our algorithm, (A1) will follow directly from the fact that each Fi 
is its own inverse (it would suffice, in fact, just to have each F~ invertible 
and choose Fi and F71 with equal probabilities); (A2) will follow as each 
w' is a fixed point of at least one Fi s ~ .  The bulk of this paper is devoted 
to the proof of (A3). 

3 In other Monte Carlo algorithms the set of transformations and the probability distribution 
can depend on the current state, but the algorithms introduced in this paper are of the type 
discussed above. 
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We will now define the t ransformat ions  Fi. To  do this, we will first 
define some t ransformat ions  Ti which per turb  SAWs into objects that  m a y  
or may  not  be SAWs. Then,  for w in SN(A, B), we will put  

Fi(w)={Twi(W ) if Ti(w)6SN(A,B) 
if T~(w)r B) 

In words:  Fi a t tempts  to deform w; the deformat ion  is accepted if the result 
is a SAW and rejected otherwise. 

Given  a SAW w = ( w o  ..... WN) and integers k and l such that  
0 ~ k < l ~< N, define the inversion inv Tk, t(w ) to be the sequence w'= 
(w;,..., w~v) given by 

, ~Wk+Wt--Wk+t_~ if k<~i<~l 
w~ = (w~ otherwise 

Thus,  [w~,,..., w~] is the curve [wt ..... wk] inverted through the point  
(wk + wt)/2. For  d =  2, this is a 180 ~ ro ta t ion  a round  (wk + wt)/2 as shown 
in Fig. 2. 

Another  way to view this t rans format ion  is via the sequence of steps 
clef s~, Si,...,SN in w, where si = w i - w i  1. The steps of Tk, t(w ) i n v  are s l ,  

si,...,sk, st, st 1,...,sk+2, sk+l, St+I,...,SN. Observe  that  the inversions 
i n v  Tk, k+z(W ) are precisely the length-preserving B F A C F  moves.  

Next  we define t ransformat ions  which reflect a piece of a SAW 
through a hyperp lane  which makes  angles of 45 ~ with exactly two of the 
coordinate  hyperplanes.  Consider  the case d =  2 first. Fo r  we  SN(A, B), 
O<~k<l<~N, and m e  { 1, + 1 }  define ,'r, ref . . . .  (l) (1) - ~t~, t tw) asfollows. I fw t - w  k r 

Wk 

l/3 

tt) 1 
I . . . . . . . . . .  

I 
tt) k w; 

t t J  def  Tinv (w ~ 
k,l \ ) 

Fig. 2. Inversion transformation in o~2. 
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tO k 

Wl w; 

W 
~/)t def T r e f , _ l ( w ~  

= k,l \ ) 

Fig. 3. Reflection in the perpendicular bisector of [Wk, w~]. 

m(wl2)-w~2~), then put  ~ror, m, , 1~,l tW)= W; otherwise, put  lk, l~ef'm'tw)=" 
(w~ ..... WN), where 

wi~_f(w (1)-we[u,(2) - - W I 2 ) ) ,  ' " ' ( 2 ) - t a ' l ( '  (~) - -wl l ) ) )  if k<<.i<~l " ' \ ' "  k + l  i "Vk " ' ~ , V V k + l - - i  

[ wi otherwise 

Thus [w~,..., w~] is a reflection of [Wk,..., W~] through the perpendicular  
bisector of [w k, wz] if the line [wk, wl] has slope m. This is illustrated in 
Fig. 3. 

F o r  d~> 3, we proceed similarly. Fo r  w e SN(A,  B), 0 ~ k < l<~ N, m e 
{ - 1 ,  + 1 } ,  and 1 <<.c~<fl<~d, define --~f,m , , W~)_W(k=) lk,  t;~,~tW ) as follows. If  # 
mr, (~1 _ ,,,(t~)~ ,,,<~) =a u ~ ( 7 )  ~ r e f ,  m + ~,~ ,,k J or  if ,~/ ~ , , k  for some 7r then put  lk, t;~,atw)=w; 
otherwise, put  ~ref, . . . . .  lk, Z;~,atW) = (Wo,..., WN), where 

~w~/~-m(w~+z~-~ ' ) -  (~+~- '~)  if k ~ i < ~ l  and 7 i sc~or f l  
( w ; ) ~  = ~wl ~) wl otherwise 

In three or  more  dimensions we require one more  class of t ransforma-  
tions. Fo r  wESN(A,B) ,  O<~k<l<<.N, m E { - l ,  + 1 } ,  and l<<.e<fl<~d, 
define int, m T~.l;~.t~(w ) as follows. If  w ~ ) - w ~ ) r  ~) w~a)), then put  

in t ,m Tk.l;~,a(w ) w; otherwise, let w' def int,m = = Tk, t;~,t~(W) be the N-step walk whose 

steps s~ def W~ -- W'i 1 are 

( m . s l  ~) if k<i<~l  and 7=c t  

s;(~)ae~m.s l  ~) if k<i<~l  and y = f l  
! 
~sl  ~) otherwise 

The interchange t r ans format ion  T~nt/ma(w) interchanges the c~ and fl 
coordinates  of the steps sk+ ~, , sl; T~t~i+~(w)keeps the or ienta t ion of the 
interchanged coordinates,  while ~nt, ~, , ~,~;~,~tw~ reverses them. Not ice  that  if 
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d>~3 and w is contained in the hyperplane {x :x( l~=0} ,  say, then 
T r e f ,  m / ~ i n v  k,t;~,~tw~ and Tk, t(w) will also be contained in that hyperplane; the only 
way to break out of the hyperplane is using Tk, t;1,~(w),int'm where sl ~) # 0 for 
some i e  { k +  1 ..... l}. Thus, the T int transformations are necessary in three 
or more dimensions; as shown in Section 3, they are not necessary for 
ergodicity in two dimensions. 

The transformations Ti are now defined in d dimensions: there are 

of them. A dynamic Monte Carlo algorithm may now be constructed as 
described above, using the family of transformations 

~-N={F;"~,vr~f 'm Vi" t 'm 'o -<  z~ I<~N, 1 <fl<~d, a n d m e { - 1 , 1 } }  

obtained from the corresponding T's. We say that two SAWs w and w' are 
directly connected if w' = F(w) for some F in ~ [equivalently, if w = F(w') 
for some F in wN. observe that each F is its own inverse]. We say that w d ~  

and w' are connected if there is a sequence of SAWs w[0],..., w[p] in 
SN(A, B) such that w[0]  = w, w[p] = w', and w [ i - 1 ]  is directly connec- 
ted to w[i] for each i =  1,..., p. Thus, ergodicity is equivalent to the 
property that any two SAWs in SN(A, B) are connected. This property will 
be proven in the next section for d =  2 and in Section 4 for higher dimen- 
sions. 

Remarks. 

B1. In practice, the following Monte Carlo algorithm (or a variation 
of it) may work more efficiently than the straightforward procedure 
described above. First, pick a pair k, l from among all pairs 1 ~< k < l~< N 
with some fixed probability distribution (e.g., uniform). Then, knowing 
w ~, 13 = w, make a "short list" of all the F 's  that are "candidates": F ~  " is 

F r e f ,  m always on the list; -~,t;~,B is on the list if '*'~)-,~ .~k'"(~) -,,,t,~t-~'~'"'(e~ . . . .  ,,k(~ and 
w~ ~/ w5 y) for all 7 # a, fi; i n t ,  m WIa) ,,,(c~) - -  vw[,,,(fl) W(kfl)) = Fk,~;=, e is on the list if - - ' ~ k  - -  " ~ t ' ~ l  

Choose an F uniformly from this short list and put w E'1=F(co). It is 
not hard to see that the transition probabilities are symmetric for this 
algorithm. 

B2. When implementing this algorithm, one could generalize the 
definition of , ~ r e f ,  m , , *~.,;~,~tw) for d~>3 as follows. If wS=)-w~')#m(w~ ~ w~l~)), 
then put ~ r ,  . . . . .  .k,t;~,,t~tw) w; otherwise, put .a~ref, rn e \ = .t~,z;~,13tw ) = (w o ..... Wx), where 

(w~)(7~=) ~ " '~"k+~-~ "z if k<<,i<~l and y i s ~ o r f i  

(wl  ~) otherwise 
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The definition given earlier is only the minimum necessary to ensure 
ergodicity. 

B3. Caracciolo et al. (141 have studied an algorithm (henceforth 
referred to as the CPS algorithm) which uses the BFACF moves and 
inversions. This generates a Markov chain on 

S(A, B) aef ~ SN(A, B) 
N=O 

which is the set of all SAWs beginning at A and ending at B. The proofs 
given in Sections 3 and 4 imply that condition (A3) above holds for the 
CPS algorithm, as will be briefly shown at the ends of those sections. 

3. PROOF OF ERGODICITY IN TWO D IMENSIONS 

Ergodicity will be proven by induction on the dimension d. The first 
step is d = 2. 

T h e o r e m  1. Fix endpoints A and B in y,2, and fix a length 
N>>,IA-BI having the same parity as ] A - B I .  Then the Monte Carlo 
algorithm o n  SN(A, B) is ergodic. 

ProoL Let RN(A, B) be the set of all SAWs in SN(A, B) which are 
subsets of the boundary of some rectangle; that is, w ~ RN(A, B) if there 
exists c e ~e2 and integers kl ,  k2 > 0 such that 

[Wo,... , WN] ~ [C, C -[- (k 1, 0), c + (kl, k2), c + (0, k2), c] 

Notice that if w e RN(A, B), then [Wo ..... WN] has at most one right-angle 

YO ~ 8 , - - ~  Wl 

Fig. 4. W(w) (thick lines and [w18, w0] ) and Int(W(w)) (shaded region). 



Self-Avoiding Walks 167 

turn if N =  LA-BI and 2, 3, or 4 right-angle turns if N >  I A - B I .  The 
theorem will follow once the following two statements are proven: 

C1. Any SAW in SN(A, B) is connected to some SAW in RN(A, B). 

C2. Any two SAWs in RN(A, B) are connected. 

We prove statement (C1) first; statement (C2) will be verified later in this 
section. For  w in SN(A, B), let H(w) be the boundary of the convex hull of 
w, considered as a subset of the plane, and let W(w) %r [w0, wl ..... WN, WO] 
be the "trace" of w, including the line connecting w0 and WN, as illustrated 
in Fig. 4. We require the following lemma. 

L e m m a  1. If H(w) ~_ W(w), then w E RN(A, B). 

Proof. If [Wo, Wl ..... WN] is the line segment [A, B], the result is 
obvious. Otherwise, H(w) is a simple closed curve. Since [Wo, wl ..... WN] 
does not intersect itself, it cannot contain all of H(w), so the hypothesis 
implies that some point of (A, B) (~f [A, B]\{A, B}) is in H(w). Since 
[ A , B ]  is in the convex hull of w, it follows that [-A,B] is a subset 
of H(w). Let U =  H(w)\(A, B). U is a curve with no self-intersections, 
having endpoints A ( -Wo) and B (=WN), and U is contained in the 
curve [Wo, wl,..., WN], which also has no self-intersections; hence U =  
[Wo, Wl ..... w~v] and H(w) = W(w). This implies that each line segment in U 
is parallel to a coordinate axis. Since H(w) = Uw (A, B) is the boundary of 
a convex set, it follows that U consists of at most four line segments and 
that U is contained in the boundary of some rectangle. | 

Next, we define a function f :  SN(A, B)-* ~ such that every w in 
SN(A, B)\RN(A, B) is directly connected to a SAW w' in SN(A, B) satisfing 
f (w')>f(w).  As SN(A,B) is a finite set, this will prove statement (C1) 
above. Following the proof of the theorem, we show that the range of f 
contains at m o s t  N4/8 %- 1 values. 

Let W be a closed curve. For  a point y in W c (the complement of W), 
the winding number of W around y is 

der 1 ~ dz 
l(y, W) 

= 2-~i~i Jw z ~ y  

(here we view points of the plane as complex numbers). The properties of 
winding numbers are well known: I(y, W) is an integer, 0 if y is in the 
unbounded component of W c, and _+ 1 if W is a simple closed curve with 
y in the bounded component of W C. Define 

Ext(W) = {yE W~: I(y, W)is even} 

Int(W) = { y e  We: I(y, W)is odd} 

822/'58/1-2-12 
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Thus, Ext(W)w In t (W)w W is the entire plane. Roughly speaking, y is in 
Int(W) if and only if y e W c and any curve from y to infinity crosses W an 
odd number of times. Finally, we define f (w)  to be the area of Int(W(w)), 
as depicted in Fig. 4. 

Now suppose w ~ SN(A, B)\RN(A, B). From Lemma 1 there is a point 
Yo ~ H(w)\  W(w). This Y0 is an interior point of one of the line segments of 
H(w). Let L be the (infinite) line containing this line segment and let k and 
l be the unique integers (see Fig. 4) such that: 

1. O<~k <l<~N. 

2. wk, wte L. 

3. The line segment [w~, wl] contains Yo. 

4. w j C L f o r a l l j ~ { k + l  ..... / - 1 } .  

Let w' i n v  . = Tk, t(w ), we show that w' is a SAW. Since wk and wz are 
on the boundary of the convex hull of w, the closed half-plane having 
boundary L and containing wk + 1 must contain all of the points of w. Since 
wj r L for k < j < l, this closed half-plane contains none of the points wj for 
k < j </ .  Hence w' is self-avoiding. 

To show that f (w ' )> f (w) ,  first abbreviate W =  W(w) and W ' =  
W(w'). Let 

Q =  [wk, w;+l,..., w)_l, w;, w; , . . . . .  Wk+l, Wk] 

as shown in Fig. 5. Here [wk,..., wt] and [w~ ..... w}] are simple curves, each 
residing on a different side of L. Hence Q is a simple closed curve. Aside 
from the points wk and wl, Q is the symmetric difference 

Q= WzlW'  de=f ( W \  W')w (W ' \  W) 

I1) 1 113 0 

'1.017 

Fig. 5. W(w') and  Q = [w15, w'16, w'17, w18, w17, w16, w15]. 
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It follows that for y in (Ww W') c, 

I(y, Q) = I(y, w) + I(y, W') (mod 2) 

So 

Int(Q) = Int( W)A Int(W') = Int( W)\ Int(W') w Int( W') \ Int(W) 

To show that f(w') >f(w) ,  we need to show that 

area of l int(  W') \ Int (W)]  > area of Elnt(W)\Int(W')]  

Now, there is a circular neighborhood N centered at Y0 which does not 
intersect Ww W' (see Fig. 5). Also, Yo e Int(W')\Int(W).  Therefore: 

i. In t (W') \ Int (W) contains Int([w2, w'k+~ ..... w~, w'k])wN, which 
has area 

�89 of Int(Q)] + 1[area of (N)] 

2. In t (W)\Int (W')  is contained in Int([w'k,w'~+l,...,w~,w'k])\N, 
which has area 

1[area of Int(Q)] - �89 of N) 

Therefore f (w ' ) - f (w)>~ (area of N); in particular, f (w ' )> f (w)  and state- 
men t  (C1) is proven. 

It remains to prove statement (C2). We distinguish between two cases: 
N =  JA-BI and N >  IA-BI .  

1. N = ] A - B I :  If [A,B] is parallel to a coordinate axis, then 
SN(A, B) consists of only one SAW. Otherwise, there are exactly two 
SAWs in RN(A, B), say w and w,' and w' = To.u(W).inv 

2. N> I A - B  I" By rotating the coordinate system if necessary, we 
can assume A(I~<B ~1~ and A(2)>~B(2( Let w* be the unique SAW in 
RN(A,B) having w * = A - ( 0 , 1 )  and w* I = B - ( 0 , 1 ) .  Let w be an 
arbitrary SAW in RN(A, B); we will show that w is connected to w*. We 
may assume that either min{  (2)'0~<j~<N} <min{A (2), B (2)} or there W j  . 

exists an integer J < A  ~) such that [Wo, W~ ..... WN]= [A, (J,A(2)), 
(J, B(2)), B] [if not, replace w by inv To.N(W)]. In particular, w 1 is either 
A - ( 0 ,  1) or A - ( l ,  0). If Wx = A - ( 0 ,  1), put w'=w; otherwise, we define 
w' as follows. Let 

d e f  r . 

k = max(t: w i = A - ( i ,  0)} 

d e f  c . 

! = max~t: wi=wk- (O  , i - k ) }  

d e f  

m = max{i" w~= wl+ (0, i - l ) }  
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Thus wk, wt, and w,, are three of the corners of the rectangle determined 
by w. Now define (see Fig. 6) the SAWs 

w EI~= r+"; l(W) 
wE2~ r;G1 l(wE'l) 

1 , / + k +  

W r ~ T inv  ( u ~ [ 2 ] ]  
~ l +  l ,m~, ,v  ,t 

Now w' is in RN(A, B), w] = A -  (0, 1) and W~v_ 1 equals either B - ( 0 ,  1) 
or B + ( 1 , 0 ) .  If W N _ ~ = B - - ( 0 , 1 ) ,  then w'=w* and we are done. 
Otherwise, w~v_~ = B + ( 1 ,  0), and we can repeat the algorithm of the 
preceding paragraph (with the necessary trivial modifications) to show that 
w' is connected to a SAW w" in RN(A, B) with W'u_l = B- -  (0, 1) and w'~' = 
A - ( 0 ,  1); but then w"=w* and Theorem 1 is proven. | 

We now show that the function f(w) def = area of Int(W(w)), defined in 
the above proof, attains at most N4/8 + 1 values. This implies that every 
SAW is connected to a SAW in RN(A, B) via a sequence of at most N4/8 
inversions. The last part  of the proof  above implies that any two SAWs in 
RN(A, B) are connected via a sequence of at most 16 transformations. It 
follows that every two SAWs in SN(A, B) are connected via a sequence of 
at most  N4/4 + 16 transformations. 

If A ( ~ =  B (1~ or A(2)= B (2), then W(w) follows grid lines and the area 
f(w) is an integer between 0 and N2/4. Otherwise, assume, without loss of 
generality, that A(I~< B (~) and A (2) < B (2~. Redraw w in the plane, mapping 
wi=(wll),wl 2~) to the planar point ((B(Z)--A(2))WI 1), (B(I)-A(ll)wI2)). 
This ensures that the line [A, B] is at 45 ~ with the coordinate axes and 
goes through at least one grid point. Hence, the area of the redrawn 
Int(W(w)) is an integer multiple of 1/2. Yet the redrawn area is 
(B (1) - A(I))(B (2) - A (2)) times larger than the (original) area of Int(W(w)). 
Thus, the area of Int(W(w)) is an integer multiple of 1/[2(B(~I-A ~)) 
(B (2)- A(2))]. The area of Int(W(w)) is at most N2/4; hence f(w) attains 
at most (N2/4) 2(B (~) - A(I))(B (2) - A (2)) q- 1 ~< N4/8 + 1 values. 

wk- ,A [A 

I . t 
~ l + k + l  

A ;[A 

[2] ! 
[ W l + k + l  : t 

w [2l w N w wm_ k 
l /+1  

w w [q w N w ~ 

Fig. 6. Transforming a SAW in RN(A, B) into another. 
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Corollary 1. The CPS algorithm is ergodic in ~2.  

Proof. As shown above, any SAW in SN(A, B) is connected to some 
SAW in RN(A, B) by a sequence of inversions. It is easy to see that any two 
SAWs in U~=o RN( A, B) are connected by BFACF moves. [We remark 
that the subset of length-conserving BFACF moves alone does not connect 
all SAWs in SN(A, B); see ref. 5.] | 

4. PROOF OF ERGODICITY IN HIGHER D I M E N S I O N S  

Throughout  this section, we assume that the dimension d is at least 3. 
Let w=w o ..... WN be a SAW in ~d.  For  i~ {1 ..... N}, exactly one of the d 

def 
components of the ith s t e p s i =  w i - w i  1is +1  and the rest are zero. If 
sla~= _+1, we say that s~ is a step in the 6th coordinate and write 
coor(si) = 6. A sequence wj ..... wk where 0 ~< j ~< k ~< N is a segment of w. Its 
length is k - j ;  it steps are sj+ 1,-.-, s~. A segment wj ..... w~ is straight if all 
its steps are identical: sj+l . . . . .  sk (a segment of length 0 or 1 is always 
straight). A straight segment is in the 6th coordinate if one (hence all) of 
its steps are in the 6th coordinate. A straight segment of w is maximal if 
it is not contained in any other straight segment of w. A maximal straight 
segment has length of at least 1. Every SAW "decomposes" uniquely into 
maximal straight segments that intersect only at their endpoints. 

Let w be a SAW that decomposes into m maximal straight segments, 
and suppose that the ith segment is in the 6~th coordinate, w is canonical 
if (1) 6~r  for all l<~i<j<<.m, or (2) 6~r for all l < . i < j < m  and 

S 1 ~ - - S  N .  

In the first case, the length of w is [WN-- W0[ and w is a minimal length 
canonical walk. The two types of canonical SAWs in ~(3 are illustrated in 
Fig. 7. 

Let A, B ~  d. We show that 

D1. Every SAW in SN(A, B) can be transformed into a canonical 
4 1 ) d - 2 _  SAW in SN(A, B) via at most (aN + 18)(N2+ 2 transformations 

in y N .  

D2. Any canonical SAW in SN(A, B) can be transformed into any 
~ ' N  other canonical SAW in SN(A, B) via at most d2/2 transformations in ~ d- 

Fig. 7. Canonical SAWs. 
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Therefore, any SAW in SN(A, B) can be transformed into any other SAW 
in SN(A, B) via at most 2[( �88 18)(N2+ 1) a 2 _  2] + d2/2 transforma- 
tions in ~-~. For large N, this is less than N 2d. We begin by proving state- 
ment (D1); statement (D2) will be verified in Lemma 3. We first need the 
following simple lemma. 

kemma 2. Let WE SN(A, B) be a minimal-length canonical SAW 
that is not straight and let x e  {wl ..... WN-1}. Then x r  inv TO, N(W). 

Proof. x = w~ for some 0 < I <  N. Since the walk is not straight, there 
are two distinct coordinates 81 and 8 2 such that 61 = coor(si) for some i ~< I 
and 82 = coor(sj) for some j > / .  Since w is a minimal-length canonical 
SAW, (1) x (al) ~ A (al) and (2) x (a2) ~ B (a2). 

Suppose that xaco' .  Then x =  w) for some 0 < J < N .  Now wJa2)= 
x (a2) # B (a2) implies that w~ precedes (or is in the middle of) the segment of 
w' that is in the O2th coordinate. But w' aer i,v = TO, N(W ) is a minimal-length 
canonical SAW in which the (unique) segment in the 62th coordinate 
precedes the (unique) segment in the 61th coordinate, hence x(al)= 
w y  ') = A (al), contradicting (1). | 

We now prove by induction on d that if A, B a ~,a, then every SAW 
in SN(A, B) can be transformed into a canonical SAW in SN(A, B) via at 
most 

fa de_f (�88 + 18)(N2 + 1)a_ 2 _ 2 

transformations in Y~.  In the last section we saw that any SAW in ~2  can 
be transformed into a canonical SAW via at m o s t  � 8 8  16 transforma- 
tions in o~u. This provides the induction basis. For  8 e  {1 ..... d}, a subset 
H of Lr d is a (5-hyperplane if x (a) = yIa) for all x, y s H. We prove the induc- 
tion step by creating successively larger SAWs in d-hyperplanes, then using 
the induction hypothesis to transform them into canonical SAWs. Appeal- 
ing to geometric intuition, our terminology refers to the dth coordinate 
axis as vertical. We therefore say that a point x s ~ a  is higher (lower) than 
a point y ~ ~qfa if x(a)> y(a) (x(a)< y(d)). We say that x is directly above 
(directly below) y if, in addition, x (~) = y(a) for all 6 e { 1,..., d -  1 }. We also 
say that a step of w is vertical if it is a step in the dth coordinate and that 
it is horizontal otherwise. A segment is vertical if all its steps are vertical 
and horizontal if all its steps are horizontal. Define 

def r (d) 
top(w) = m a x i w ~  : 0 ~ < i E N }  

to be the dth component of the "highest" vertices in w and let the top 
hyperplane 

Top(w) a~__r {x: x(d)= top(w)} 
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be the "highest" d-hyperplane containing a vertex of w. All the figures from 
here on represent our three-dimensional intuition; they are given merely to 
help visualize the definitions. To prove the induction step, we establish the 
following claim. 

C l a i m .  For all A, B e ~  a, every SAW wr B) can either be 
transformed to a canonical SAW in SN(A, B) via at most fd ~ transforma- 

~ - N ,  tions in ~" a, or it can be transformed via at most fa -  1 + 2 transformations 
o z - N  W t in ~,~ to a SAW ~SN(A,B) such that (1) t o p ( w ' ) > t o p ( w )  ("w' has 

a higher top thanw") ,  or (2) t o p ( w ' ) = t o p ( w )  and [w 'c~Top(w ' ) [>  
]wnTop(w)[  ("w' has the same top as w with more vertices in the top 
hyperplane"). | 

Since A (d) <~ top(w) ~< A (d) + N and [w c~ Top(w)[ ~< N for every walk in 
SN(A, B), after at most N 2 applications of this process, we obtain a SAW 
that is either canonical or can be transformed to a canonical SAW using 
at most fd 1 transformations. Therefore, every SAW in SN(A, B) can be 
transformed to a canonical SAW. The number  of transformations required 
is at most 

( fd-~+2) NZ+fa 1 

1 4 1)d -3  =[( �88  + 18)(N2 + - -2  

_-- ( �88  18) (Ne+ 1) d 2 - 2  

= f .  

Proof of Claim. The proof  covers many individual cases and is there- 
fore somewhat involved. A schematic flow chart describing these cases is 
given in Fig. 16, at the end of the paper. 

Consider the intersection of w and Top(w). There are two possibilities. 

1. wc~ Top(w) consists of several, necessarily disjoint, SAWs. Then 
there are two integers t I a n d  t 2 > t I + 1 such that w,1, w,2eTop(w ) and 
wiCTop(w) for all t~<i<t2. In this case, w'aefT i . . . .  = ,l.,2tw) is a SAW with 
top(w')  > top(w) as illustrated in Fig. 8. 

2. w c~ Top(w) consists of a single SAW. Then there are two (possibly 
identical) integers tl and t 2 ~> tx such that w i e Top(w) for all t~ ~< i ~< t2, and 
wi r Top(w) for all 0 ~< i < t I and all t2 < i ~ N. Since W,m ..... w,2 is contained 
in Top(w), it is a ( d -  1)-dimensional SAW. Also, w has no other vertices 
in Top(w). By the induction hypothesis, w,, ..... w,2 can be transformed via 
at most fd 1 transformations in ~ u  ~ U  into a canonical SAW in 
Top(w). We further distinguish between two possibilities. 
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Wt 1 Wt 2 

W 

Fig. 8. 

Top(w) 

Madras e t  al. 

W" W t 
tl t2 

Wt def  inv = r ~ l , t 2 ( w  ) 

w c~ Top(w) consists of several SAWs. 

(a) w,,,..., wt2 is not  minimal length. Then, the first and last straight 
segments of w,1 ..... w,2 are in the same coordinate,  say & Necessarily, fi # d 
and s,~ + 1 =  - s t2 '  let m = .(a) Let t' be the penult imate vertex in the first ' '~ t l  -+- 1"  

segment of wt~,... , wt2 and let t" be the second vertex in the last segment�9 
Then w' def int,m = Tr.c,;a,d(w ) is a SAW with t o p ( w ' ) =  t o p ( w ) +  1 as illustrated in 
Fig. 9. 

(b) w,~ ..... wt2 is a minimal-length canonical  SAW. If the segments 
w 0 ..... w,~ and w,2,..., WN are both  straight, then w is canonical  (this also 
takes care of the case t I = 0 and t2 = N). If  not,  then there is an integer I e  
{ 1,..., N} - {tl ..... t2 + 1} such that  s, is horizontal :  s~a)= O. We distinguish 
between two cases: 

(i) wt~,..., wt2 is straight: s,~ +1 . . . . .  s,2 (this case includes t 1 = t2). If  
the walk is contained in a hyperplane,  then by the induct ion hypothesis it 
can be t ransformed into a canonical  SAW. 4 Otherwise, let 6 =coor(st2);  
choose a coordinate  ~ different from 6 and d. Since w is not  contained in 
a hyperplane,  there exists a nonzero  real number  b such that  the hyper- 
plane { x e N a :  b(x(~)-w(~))+(x(a) -wf~  ) ) = 0 } , 2  contains wt~,..., w, 2 and 

W l f f t  

Wt2 
W t - 

W I : W t t ,  tl 

W W! def  rr~int,-t-1 / ", 
= le, t , , ;8,Aw ) 

Fig. 9. wt,,.., w,2 is not minimal length. 
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s (a) = 1 s(~ a) = 0 

Fig. 10. Two-dimensional view when W,y., w,2 is straight. 

at least one other  vertex wu of w, and that  the half-space { x s N ~ :  
b ( x ( ~ ) _  W ~ ) ) + ( X ( d ) _ W ,  2(a))<~O} contains  all of w. Wi thou t  loss of 
generality, u > t 2  and wj is not  in this hyperp lane  for every j ~  
{ t 2 + l  ..... u 1}. Then  w'def i.v -- = T,2,u(w ) is self-avoiding. Now,  t 2 and u were 
chosen so that  �9 (d)< .  ( J )=  top(w)  for all t 2 < i ~  u and " (d) .<,,,(dl W U  1 ~ rvu  " vv i W t 2  

Therefore,  i f ' ,~  (~) < w~ a~ for some i e  {t2 + 1,..., u - 1 }, then w' has a higher 
top than w; otherwise, w ~ + ~ e T o p ( w )  as s(~a/=0, hence w' has the same 
top with more  vertices. These cases are i l lustrated in Figs. 10a and 10b. 

(ii) The  minimal- length  canonical  SAW w,~,..., w,2 is not  straight. 
This case is more  involved. Let 

sec(w) a~f m a x { k  < top(w):  ,,,~a)_ ,~,(a) = k for some i t  {0 ..... U -  1 }} 

and let 

Sec(w) a~=f {x ~ ~ a :  x(d~= sec(w)} 

Visually, if we trace the SAW w, then Sec(w) is the second highest 
d-hyperplane containing a hor izontal  line. Since the segments  Wo ..... w,~ and 
w,~ ..... wN are not  both  straight,  sec(w) and Sec(w) are well defined. 
Wi thout  loss of generality, assume that  Sec(w) contains  a segment  w~, w~+~ 
for i > t2. Let 

a~r m i n { i e  {t2,... , U}: w ~  Sec(w)} /'/1 

and let 
def  

u2 = m i n { i ~  {ul + 1 ..... U}: wi~ Sec(w)} 

Defined this way, u2 is the first integer larger than  t 2 such that  wu2 is in 
Sec(w) but  is not  directly below wt2. Define r to be the unique point  in 

4 We use a slight generalization of the induction hypothesis that allows the SAWs to be in any 
( d -  1)-dimensional coordinate hyperplane of ~ed, not just ~ d  1. 
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r wt~ T o p ( w )  r wt2  

Sec(w) 

4 )=o (b) 
Fig. 11. Two-dimensional view when %,,..., wt2 is not straight. 

Top(w)  directly above wu2. Note  that ~ is not  necessarily in w. There are 
~(d) 1, and two possibilities for su2. Either Su2(d) ---- 0, and then u2 = Ul -~ 1, or  a,2 = 

then U l +  1 < u 2  and �9 ( d ) / s e c ( w ) =  w,~ = w~2 vvi --. (d) . (d) for all u l < i < u 2 .  These 
possibilities are illustrated in Figs. l la  and 1 lb. 

The case where s (a) = 0  is easier and we consider it first. At w,2, the u2 
walk can end (wu2=B),  continue horizontally t~(d) = 0 ) ,  go down 

~ ~  2 + 1 
def 

"~ 1 ---- - - 1 ) ,  o r  u p  (Ou2~(d)+ 1 = 1). I n  t h e  f i r s t  t h r e e  c a s e s ,  l e t  v2 = u2 .  I f  t h e  

walk goes up, then by choice of sec(w), it goes straight up, then ends at B; 

in that case, let v2 ~r N. 
If z is not  in w, then w' def Tiny (W'~ is self-avoiding with a higher top t2, v2" I 

(if v2 ~ u2) or with the same top and one more  vertex in the top (if v2 = u2). 
If z ~ w, then, since w,~,..., w,2 is a minimal-length canonical  SAW that  is not  
straight, wt~ cannot  be z (which is adjacent to w~2 ). Therefore, by Lemma 2, 

w* oe~ Tin~ (w~ does not  contain z and ]w* c~ Top(w*)] = Iw c~ Top(w)l.  So 
t l , t 2  ~, ; 

we can let w' def= Tiny (w*] F r o m  here on, we assume that  s ,  2(d) = 1. We t2,~2 \ r 
distinguish among  three possibilities. 

A. z q~ w (see Fig. 12a). Then w' d~f T i . . . .  = ,2,u2tw) has a higher top. To see 
that it is self-avoiding, note that the segment w;,..., w',: is the original 
self-avoiding segment Wo ..... w,2 and the segment w',2 ..... WN is the original 
segment w~,. . . ,  WN. The segment w',: + 1,..., w'~: + ~: , ,_  ~ (originating from 
w,~ +l ..... w,2_ ~) lies strictly above Top(w) where there are no other vertices 
of w'. The segment w',:+,: ~,..., w,:' (originating from w,:,..., w,1 ) lies in the 
straight line connect ing z and w~ where there are no other vertices of  w'. 

B. ~ ~ w and z r w,~ (see Fig. 12b). As we did in Case 2b(ii), first let 
W* def Tinv , , 

= ,l,,2tw). Since w,, ..... w,2 is a minimal-length canonical  walk, 
Lemma 2 implies that  r is not  in w*, the new walk has the same top as w 
and the same number  of vertices on top. Hence we are back in case A. 

C. z E w and z = w,~ (see Fig. 12c). Let w,~ be the last point  of w that  
is in Sec(w). Since Sec(w) contains at least one horizontal  segment, u3 r u2. 
At wu3 , the walk can end (w~3= B), go down t~ = --1), or  up 
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T * Wt  2 

U)u2 LOu2 LOu 1 

-7 -7 

w"~i  B 

~ [  l"ou3 

Fig. 12. Three-dimensional view when s(~)= 1. 

def 
(a-3+" .(dl 1 = 1). If it ends or  goes down,  let v3 = u3. Otherwise,  the walk goes 

straight up and then ends at Wx = B; let v3 ~f N. I t  is easy to verify that  

w' ~r  Tiny (w~ has a higher top than w; we show that  it is self-avoiding. Let  
t l ,V3 \  ] 

w~ be the vertex of w that  lies in the d-hyperplane  containing w~3 directly 
t above w,l. The segment  w~ ..... w,~ ~ is the original segment  wo ..... wtl 1, no 

vertex in it coincides with an earlier one. The  segment  w', ..... w',~ + ~_ ~l is a 
rigid t rans format ion  of w~,..., w~3 and therefore it does not  intersect itself. 
It  lies on the d-hyperplane  Top(w)  or above  it where there are no other  
vertices of w' [-we are in case 2, which assumes that  w c~ Top(w)  is a single 
SAW].  The straight  segment  W'~l+~ ~ ~+1 ..... w'~+~ ,~ ~ (originat ing f rom 
w~2+1 ..... w~_  ~) lies directly below W',l+ ~3 ~J and is strictly higher than  w~3. 
The only other  vertices of w' in that  region are directly below w',~ and there- 
fore do not  coincide. The segment  w'~+~_,~,..., w'~ originating f rom 
w,~ ..... w,~ lies in the d-hyperplane  {x: x(a)=" (a)}. The only other  vertex of W v  3 

w' in this hyperplane  belongs to the vertical segment  W'o,..., w',~. Denote  the 
vertex, if it exists, by w' s = ws. If  w'~ does not  intersect the segment,  then w' 
is a SAW, as w'~+~ ..... WN is the original w~+~,..., WN, lying lower than  
See(w). If  w's intersects the segment,  then, as in case 2b(ii), we first let 
w* def T~nv (w~ and then w' de f T i ~  tw*~ To  show that  w' is self-avoiding, tl,t2t i t i ,v3 ' ,  i "  

we need only show that  w' s does not  intersect the segment  w',, + ~3-~2,..., w~,3 
at w'~ (originating f rom w~) or at w;~+~ ,: (originating f rom w,~). wi~ does 
not coincide with w',~ as w',,~ is indirectly above  w,~, whereas w'~ is directly 
above w,2. W's does not  coincide with w't~+~3 ,2, as w;,+~_,2 is directly 
below w;~+~3_,~ (originat ing f rom %1), whereas  w' s is directly below 
W;l + ~ - , 3  (originat ing f rom w,3 ). II 

It remains to prove  s ta tement  (D2). 
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Lemma 3. Any canonical SAW in SN(A, B) can be transformed 
into any other canonical SAW in SN(A, B) using at most d2/2 transforma- 
tions in y x .  

Proof. Let w and w' be canonical SAWs in SN(A, B). We distinguish 
between canonical SAWs that are minimal length and those that are not. 

1. N =  I A - B I .  Then both w and w' consist of the same number of 
maximal straight segments. The segments corresponding to each coordinate 
are of the same length. The only difference is the order of the segments. The 
order of two consecutive segments can be reversed using one inversion 
transformation. Hence any order can be achieved using at most 

( d -  1 )+  ( d -  2) + .-. + 1 = d ( d -  1)/2 

inversion transformations. 

2. N >  IA-BI .  If w and w' are contained in the same two-dimen- 
sional plane, then the three transformations illustrated in Fig. 6 and one 
additional inversion suffice to transform w into w'. [A canonical SAW is a 
special case of a SAW in RN(A,B). ] Otherwise, let 6 = c o o r ( s l )  and 
e = coor(s'~). 

(a) If 6 = e, then Sl = S'l or Sl = -S'l.  The SAWs w and w' [or, in the 
latter case, w and inv TO, N(W )] decompose into the same maximal straight 
segments; the 6-coordinate segments are first and last, while the other 
segments appear  in possibly different order. Using at most ( d - 2 ) ( d - 3 ) / 2  
inversion transformations as above, the order of the segments can be 
modified, 

(b) If 6-r assume 6<e. Any ~ e  {1 ..... d}\{6,  e} is the coordinate of 
a maximal straight segment in w if and only if it is the coordinate of a 
maximal straight segment of w' and these two segments are of equal 
lengths. Using at most d - 2  inversion transformations, "move" the 
e-coordinate segment of w, if it exists, so that it is first. Call the new SAW 
w E~l Let w E2~ aef Tint, m [,,,[1]] where k =  [A (~) B(~)[ + IA(~)-B(~)[ and 

�9 ~ ~ k , N ; f , ~ k  " v  1 ,  - -  

where m = 1 if s~ 11~) - ~E~]~) and m = - 1  otherwise (this ensures that w E21 - - O k +  1 

is self-avoiding). Now, w E2~ is canonical and coor(s~21)=coor(s '~)=a,  so 
we are in case (a) and at most ( d - 2 ) ( d - 3 ) / 2  + 1 inversion transforma- 
tions are needed to transform w Ezl into w'. The full details are left to the 
reader�9 

The total number  of transformations used is at most ( d - 2 ) +  1 + 
( d - Z ) ( d - 3 ) / 2 +  1 <~d2/2. II 

C o r o l l a r y  2. The CPS algorithm is ergodic in ~ d  for d~> 3. 
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Proof. Reflection and interchange transformations were used in the 
above proofs only in Lemma 3 and case 2a in the proof of the claim to 
show that when w ~ Top(w) is a canonical walk that is not minimal, w can 
be transformed to a walk with a higher top. 

It is easy to see that in both cases, BFACF moves can be substituted 
for reflection and interchange transformations. | 

5. A SINGLE T R A N S F O R M A T I O N  FOR T W O - D I M E N S I O N A L  
S A W S  W I T H  FIXED LENGTH A N D  FREE E N D P O I N T S  

In this section we return to self-avoiding walks in two dimensions, but 
we focus on the free-endpoint ensemble: SN(A), the set of all N-step SAWs 
in ~ 2  with w0 = A. The pivot algorithm (6'7'16) is a highly efficient Monte 
Carlo algorithm on SN(A), in which the set of transformations y u  consists 
of: (i) reflections through vertical and horizontal lines, (ii)reflections 
through lines of slope + 1, (iii) 180 ~ rotations, (iv) 90 ~ rotations. 

In all cases, the transformation is applied to a segment of the form 
wk, w~ + 1,..., WN, with 0 ~ k ~< N. It  was shown in ref. 7 that this algorithm 
is ergodic, even if ~ 2  u includes only classes (i) and (ii), or (i) and (iv), or 
(ii) and (iii), or (ii) and (iv) of transformations; however, the algorithm is 
not ergodic if ~ -u  only includes the class (i), or (iii), or (iv). In this section, 
we prove that class (ii) alone suffices for ergodicity. In fact, we show that 
any SAW in SN(A) c a n  be transformed into any other SAW in SN(A) by 
at most 2N transformations fromf class (ii); the best bound proven before 
now is 4N, even when o~u contains all four classes. Our result is also useful 
if one wants to write the simplest possible computer  program for the pivot 
algorithm. 

For  an SAW W=Wo ..... WN, an integer k e {0 ..... N}, and m e  

{ - 1, + 1 }, define the reflection transformation T2(w)  ae=f (W'o,..., W'N by 

, d e f  ~W i for 0 ~< i~< k 
w i =  ~(W2l)-I-m(wf2)--W~2)),W(k2)+m(wlll--W(kl))) for k < i < ~ N  

As shown in Fig. 13, T~' reflects the tail of w, from w k to WN, in the line 
of slope m going through w~. Therefore, T'~(w) is a walk of length N 
starting at w 0. However, it is not necessarily self-avoiding. Note also that 
T~' is its own inverse: T~(T '~(w))= w. 

A diagonal support line (DSL) of a walk w at w k is a line of slope 1 
or - 1 containing Wk such that all vertices of w lie on one of its sides. As 
illustrated in Fig. 14, if w has a DSL of slope m at w~, then T'~(w) is 
self-avoiding, hence in SN(Wo). TO see this analytically, note that w has a 
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Fig. 13. Reflection at w k with m = -1 .  

diagonal support  line at wk if (wl 1~ - m w l 2 ) )  - (w~;~-mw~ 2~) has the same 
sign for all 0 ~< i ~< N. Hence, for k < i ~< N, 

~,1,,,~2) , , , (2)~_m(w(kZ)+m(wl l )  w~l~)) w; ( l l - m w ;  (2)=w~ 1) +'''~'~i -- ,vk , 

= 2(w(k 1) -- mw(k 2)) _ (wl I) -- mwl 2)) 

Hence, 

( w ; ( l ) _ m w ; ( 2 ) ) _  (w~l)_mw22))= _[(w}l)_~,,,,,vi(2)~_, t'vkt' 0 ) _  mw(g2l)] 

Therefore, the tail of  w is mapped  to a side of the DSL  that  previously 
contained no vertices of  w. 

For  1 ~<i~<N, the ith step of an N-step SAW w =  Wo,..., w u is the 
clef 

increment s~ = w ~ -  w~_ 1- A vertex w~ of a walk w is a turn vertex of w if 
0 < i < N and s~ r S~+l. A SAW is straight if it has no turn vertices. 

The next lemma shows that if a walk w ~ SN(A)  is not  straight, then 
there is a turn vertex wk and m e { -  1, + 1 } such that  T~(w)  has one turn 

/ T t , ~  1 t oo  

tO 

Fig. 14. 

m ~ l  W0 

(to) 
Reflection in a diagonal support line at w k. 
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vertex less than w. Therefore, any SAW can be transformed into a straight 
SAW by a sequence of at most N -  1 reflections. Since two reflections suf- 
fice to transform any straight SAW into any other, and since any reflection 
transformation is its own inverse, it follows that any SAW in SN(A) can be 
transformed into any other using at most 2N successive transformation. 

I . e m m a  4. For any SAW w that is not straight, there are 0 ~< k ~< N 
and m e { - 1, + 1 } such that T~fl(w) has one turn less than w. 

Proof. The following observations can be easily verified. 

1. If w~ is a turn vertex of w ~ SN(A) and T'fl(w) is self-avoiding, then 
T~fl(w) has one less turn than w. 

2. All SAW consisting of more than a single vertex have four distinct 
DSLs. 

3. All intersections of a SAW with a DSL are either end vertices or 
turn vertices. 

If one of the DSLs whose slope is m intersects w at a turn vertex wk, then, 
from Observation 1, the reflection T'~(w) is a SAW with one turn vertex 
less than w. Otherwise, two DSLs, one with slope 1 and the other with 
slope - 1 ,  intersect at Wo and the other two DSLs intersect at wx. 
Necessarily, then, the first and last step of w are identical: sl =sN (see 
Fig. 15a). Consider the two DSLs that intersect at WN. "Slide" them 
simultaneously in the --SN direction until at least one of them contains two 
or more vertices of w (see Fig. 15b). Let m be the slope of that DSL, 5 let 
wt be the last vertex (maximal l) contained in the DSL, and let wk be any 
other vertex contained in the DSL. The segment of w from wt to WN is 
straight. We show that wk must be a turn vertex. 

5 If both DSLs contain two or more vertices of w, as in Fig. 15b, pick one of them arbitrarily. 

W N  W N  

Wl  tb, l 
W N  

OL 

9 

tlJO WO "EU 0 

(~) (b) (c) 

Fig. 15. Reducing the number  of turns when DSLs hit endpoints. 
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Fig. 16. Flow chart for the proof of statement (D1), Section 4. 

By construct ion,  if the D S L  is perturbed in the direction of  SN, it inter- 
sects w only  once,  in the vicinity of  w~. Hence  wk is either a turn or an end 
vertex. If it is an end vertex, it must  be Wo; but this is imposs ible  because 
sl = SN; hence any line perturbed from Wo in the direction of  Sl = SN inter- 
sects the segment  from Wo to Wa. Therefore w/: is a turn vertex. 

To  see that T'~(w) is self-avoiding, note  that the two  D S L s  containing  
Wo and the two  modif ied D S L s  form a (tilted) rectangle (Wo, e, wt, fl in 
Fig. 15b). The segment  of  w between w o and wt is conta ined  in the rectangle 
and the segment  between w t and WN is straight. Hence,  after the reflection, 
the segment  between w; and W~v will all be outs ide the rectangle and will 

! t not  intersect the segment  from w o to wk. 
Hence  wk is a turn vertex and T2(w)  is self-avoiding. F r o m  Observa-  

t ion 1, T'~(w) has one  turn vertex less than w. | 
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